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Abstract

An efficient method of modeling trapezoidal built-up wing structures is developed by coupling,

in an indirect way, an Equivalent Plate Analysis (EPA) with Neural Networks (NN). Being

assumed to behave like a Mindlin-plate, the wing is solved using the Ritz method with Legendre

polynomials employed as the trial functions. This analysis method can be made more efficient by

avoiding most of the computational effort spent on calculating contributions to the stiffness and

mass matrices from each spar and rib. This is accomplished by replacing the wing inner-structure

with an "equivalent" material that combines to the skin and whose properties are simulated by

neural networks. The constitutive matrix, which relates the stress vector to the strain vector, and the

density of the equivalent material are obtained by enforcing mass and stiffness matrix equities with

regard to the EPA in a least-square sense. Neural networks for the material properties are trained in

terms of the design variables of the wing structure. Examples show that the present method, which

can be called an Equivalent Skin Analysis (ESA) of the wing structure, is more efficient than the

EPA and still fairly good results can be obtained. The present ESA is very promising to be used at

the early stages of wing structure design.
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Introduction

Traditionally, the conceptual design is often carried out using simplified relations that have

been learned from previous similar designs. This approach can only result in incremental

advancements in technology because experience-based design makes large step design

extrapolations too risky. This risk can be reduced significantly if the design is based on physics-

based high-fidelity models since using these models one can predict the consequences of large

design extrapolations with a greater confidence.

Physics-based high-fidelity models, such as those in the Finite Element Analysis (FEA) for

structures, Computational Fluid Dynamics (CFD) for aerodynamic loads etc., are increasingly

being used as early as possible in airplane design. This is not surprising because it is estimated that

about 90% of the cost of a product is committed during the first 10% of the design cycle, and an

accurate analysis is often crucial to obtaining a good estimate of the manufacturing and life-cycle

costs of a product.

For structural analysis, the Finite Element Method (FEM) is widely used because of its

generality, versatility and reliability, but its use in the early design stages faces some major

obstacles: A prohibitive preparation time for the FE model data, and a large amount of CPU time

for problems with a high number of degrees of freedom. This is especially true for complex built-

up structures such as the airplane wings.

In view of this situation, Kapania and Liu _ have developed an efficient method, using the

equivalent plate analysis (EPA), for studying the static and vibration problems of general

trapezoidal built-up wing structures composed of skins, spars, and ribs. The model includes the

transverse shear effects by treating the built-up wing as a plate following the Reissner-Mindlin

theory (FSDT). The Ritz method is used with the Legendre polynomials being employed as the trial



functions.TheLegendrepolynomialshavetheorthogonalityproperty,andthis is anadvantageover

usingsimple-polynomialsasthetrial functions,which isknownto beproneto numericalill-

conditioningproblems.

But thereisa problemin themethodin KapaniaandLiu _,thatis, sincecomplextrial functions

areused,thestiffnessandmassmatricescannotbe integratedanalytically,asin thecaseof Livne2.

and numerical integration over every item of the structural components takes a large part of the

computing effort. For instance, in solving a free vibration problem, evaluating various matrices

requires about 2/3 of the total CPU time.

This problem is addressed in this paper. Instead of evaluating the matrices over all components

of the wing structure, evaluation is performed only over the skins, whose "equivalent" material

constitutive matrix and mass density distribution are changed accordingly to incorporate the spar

and rib effects. The new skin material properties are simulated using Neural Networks in terms of

the wing design variables. As shall be shown, while the Neural-Network-aided EPA, which will be

called Equivalent Skin Analysis (ESA) hereafter, gives almost equally good results, it uses only a

fraction of the CPU time spent in the ordinary EPA in evaluating the matrices.

An Equivalent Plate Analysis (EPA) Method

The Reissner-Mindlin method, a First-order Shear Deformation Theory (FSDT), is based on

two assumptions for the displacement field: (1) A straight line normal to the non-deformed middle

surface remains a straight, but not necessarily normal to the deformed surface, line after

deformation; and (2) The transverse normal stress can be neglected in the constitutive relations.

We want to analyze a trapezoidal wing by assuming that it behaves as a plate whose

deformation satisfies the Reissner-Mindlin displacement field. For the convenience of calculation, a
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coordinatetransformationfrom (x, y') to (_,r/) is performed,whichtransformsthewing plan

surfacefrom theoriginal trapezoidalto asquare.Detailsof thecoordinatetransformationare

availablein Ref. 1.

By representingthedisplacementcomponentsasthesumof terms P,__(_)Pj__ (r]), where P's

are the Legendre polynomials, i = 1,..., I, j = I,-.-, J ( I, J are integers), we can call the vector

composed of all the coefficients of the terms as the generalized displacement vector. Based on this

displacement vector and considering the total strain and kinetic energy of the wing structure, we

can derive the stiffness and mass matrices as in the following forms:

V

[MI= I_p[Hlr[ZZI[HldV (2)
V

where the integration domain V includes all and only the spaces which the components of the wing

occupy. Details of obtaining matrix [C] etc. can be found in Ref. 1. For different wing components,

skin. spar or rib, the material constitutive matrix should be treated differently _. The integration in

the (_,r/) plane is performed using the Gaussian quadrature.

The boundary conditions are approximated by applying springs with very large magnitudes of

stiffness on the boundaries. For clamped edges both linear and rotational springs are needed, and

for simply supported edges only linear springs are used. An integration on the boundaries gives

[K _,r,,_]. The total stiffness and mass matrices of the wing structure is given as

[K,,.,,,,]=[K,_,,,,,]+[K,p,,_], [K,,r_,]=[K_k,.]+[K.,p_]+[Kr, b], (3)

[M,,,,, ] = [M _,,,,] + [M_pa,.] + [Mrib]. (4)



Thenaturalfrequenciesandmodeshapesfor thefreevibratingwingcanbedeterminedby

applyingtheLagrange'sequations,whichresultsin thefollowingeigenvalueproblem

[K,,,,o,- l xl=o c5)

where /l = 0.;: is an eigenvalue of the system of equations, c_ is the corresponding frequency in

radians/second, and {x} is the corresponding eigenvector.

Static problems (including stress distributions) can be readily solved by making use of the total

stiffness matrix [K,,,,,_ ]. For details one can refer to Ref. 1.

Compared with the methods in Kapania and Lovejoy 3and Cortial'_, the formulation in Ref. I is

such that there is no limitation on the wing thickness distribution. As shown in Ref. 1, the method

shows a good performance for both static and vibration problems in comparison with the FEA

using MSC,q'qASTRAN.

As Eqs. (1) and (2) are being evaluated by numerical schemes such as the Gauss quadrature _,

the major computing effort is spent in calculating the contributions from the large number of the

local components, namely, spars and ribs. The purpose of the present paper is to reduce the

computing effort in obtaining [K] and [M] by incorporating the contributions from those local

components to the global components such as the skin. This is accomplished by postulating a new

material constitutive matrix and mass distribution for the skins and relating the terms of the

constitutive matrix and mass density to various design variables of the wing structure by using

Neural Networks, as shall be shown in the following sections. Design variables for wing structure

can be sizing-type variables (skin thickness, spar or rib sectional area etc.), shape variables (the

plan surface dimensions and ratios), and topological variables (total spar or rib number, wing

topology arrangements etc.).



Application of Neural Networks in Structural Problems

Artificial Neural Networks (ANN), or simply Neural Networks (NN) are computational systems

inspired by the biological brain in their structure, data processing and restoring method, and

learning ability. More specifically, a neural network is defined as a massively parallel distributed

processor that has a natural propensity for storing experiential knowledge and making it available

for future use by resembling the brain in two aspects: (i) Knowledge is acquired by the network

through a learning process: (ii) Inter-neuron connection strengths known as synaptic weights (or

simply weights) are used to store the knowledge 5 .

Major steps of utilizing NN include: (i) specifying the topology or the structural parameters

(number of layers, number of neurons in each layer, etc.) of the NN, (ii) training of the NN,

corresponding to the learning process of the brain, (iii) simulation, corresponding to the recalling

function of the brain.

The NN has the following properties: (i) Many of its kind are universal approximators, in the

sense that, given a dimension (number of hidden layers and neurons of each layer) large enough,

any continuous mapping can be realized; Therefore, (ii) a NN provides a general mechanism for

building models from data, or gives a general means to set up input-output mapping (iii) The input

and output relationship of NN can be highly nonlinear; (iv) A NN is parallel in nature, and it can

make computation fast when executed in a parallel computer, though NN can be simulated

in ordinary computers in a sequential manner.

Neural Network has found numerous applications in science and engineering, from biological

and medical sciences, to information technologies such as artificial intelligence, pattern

recognition, signal processing and control, and to engineering areas as civil and structural

engineering. In the field of structural engineering, there have been a lot of attempts and researches



makinguseof NN to improveefficiencyor to capturerelationsin complexanalysisor design

problems.Thefollowing areafew examples.HajelaandBerke6 gaveanoverviewof theneural

computingapproach,andexaminedtheroleof neuralcomputingstrategiesin structuralanalysis

anddesign.AbdallaandStavroulakis7 appliedNN to representexperimentaldatato modelthe

behaviorof semi-rigidsteelstructureconnections,whicharerelatedto somehighly nonlinear

effectssuchaslocalplastificationetc.Severalcasesof neuralnetworkapplicationin structural

engineeringcanbefoundin VanlucheneandSuns.All theproblemstreatedin Ref. 8hadbeen

reproducedin GunaratnamandGero9 with aconclusionthatrepresentationalchangeof a problem

basedondimensionalanalysisanddomainknowledgecanimprovetheperformanceof the

networks.In Liu, KapaniaandVanLandingham10,methodologiesof applyingNeuralNetworks

andGeneticAlgorithmsto simulateandsynthesizesubstructureswereexploredin thesolutionof I-

D and2-D beamproblems.

For theefficient simulationof thestructuralperformancesof complexwings,therecanbe two

directionsto applyNN asspecifiedin thefollowing:

(I) Direct Application

In this case, the input layer includes all the design variables of interest (for instance, the four

shape parameters of the wing plan form). The output layer gives the desired structural

responses, such as natural frequencies etc. The EPA is being used as the training data generator,

though if necessary, results obtained using the FEM can also be used as the training data.

Preparation of training data is very important, and the training algorithm used also greatly

impacts the process of training ii. Caution must be taken in specifying the network parameters

and training criterion, such that the results of the trained network would not oscillate around the



training data. Once the networks are trained, structural responses at any design point can be

recalled in a fraction of a second and this is really favorable in a design situation 12.

(2) Indirect Application

Here it is desired to find a way of incorporating NN into the application of the equivalent plate

analysis (EPA) of complex wing structures, other than just making use of results generated by

EPA as the training data base. Note that in the EPA of a complex wing, the computation effort

is mainly spent on integrals for generating the contribution from the inner-structural

components of the wing, the spars and the ribs, to the stiffness and mass matrices. If an

equivalent anisotropic material can be found to replace the inner components, in terms of an

equivalent skin, such that the new composite wing has similar global properties as the original

one, then the EPA can be performed more efficiently. Solution of the adequate material

properties of the anisotropic material is the major obstacle here. The role of NN will be relating

the material properties to all kinds of wing design parameters, when there exists enough data

base for training. This way of applying NN has been claimed to be the best use of the Neural

Networks in structural engineering 9"

"The real usefulness of neural networks in structural engineering is not in reproducing existing

algorithmic approaches for predicting structural responses, as a computationaIly efficient

alternative, but in providing concise relationships that capture previous design and analysis

experiences that are useful for making design decisions."

This is the path that we followed in this study.
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Equivalent Skin Analysis (ESA) of Wing Structures

Since the calculation of various integrals in Eqs. ( 1) and (2) are time-consuming, it is desired to

replace the actual wing structure by an equivalent continuum model, that is, one that is composed

of a skin-like material, whose constitutive matrix [D] and distribution of mass in Eqs. (1) and _,2_

are to be decided.

It is assumed that the mass density /9 is a function of position in the plan form while each term

of [D] is a constant throughout the wing area. There can be other choices, as will be discussed

later,

We are going to solve the above problem by requiring that the stiffness and mass matrices of

the equivalent model are most approximate to those of the actual wing in a least squares sense. This

gives the following proce=lures.

(a) The Constitutive matrix

Let's write [K] = [K,,_,_i,_] = [K,j ] as the target matrix, and the stiffness matrix of the equivalent

continuum model is

g_ [C]_ [T]_ [ ][T]_. [C],_

_' _ (6)

p q m n p,q

where g,,, and g, are the Gauss quadrature weights; the constitutive matrix [D] relates the stress

and strain vectors by {o } = [D]{.e}, and Dpq is the p -th row, q-th column term of the constitutive

matrix;

m m = I,-.-, K) corresponds to the m -th Gauss integration position in the x-direction.

K is an mteger with a usual value of 6 or 8;

n ( n = I,..-, K ) corresponds to the n -th Gauss integration position in the y-direction;



is therownumberof [D]'

is thecolumnnumberof [D];

--it T T

O;,q .... = g,, g, [C],,,,, [rl,,,,, 0 ..-

0

1 ... 0

0

1 ..- q ..- 5

By constructing an error function

E_=Zw,_[_',,_D_)-K,,]_
i,j

where

1

P

5

mo.lclo.,o,',_=Z _-;'_o.
¢II, ,'I

w,x are the weight coefficients, and by requiring

8Ex 1 _R,i

8Dpq - 2 _ij w': [R" ( Dpq ) - K'J _D "pq=O '

and noting

(7)

(8)

_R,j 6 6
-- Gpq (apq means the i, j -th term of matrix [Gpq ] ),

8D pq

we can obtain the constitutive matrix term [Dpq ] by solving the following linear equation set:

p'.q" i.j t,J

i,j=l,...,K and p,q,p',q'=l,...,5.

This is an equation set with 25unknowns. Since i,j = l,. .., N and N =5K 2 is usually very

large (if we use the Legendre polynomials of 6 terms as the basis functions, N = 180, if 8 terms are

used, then N = 320), the job of generating the matrix in Eq. (9) will be very extensive.
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If [D] is assumed to be symmetrical, then Eq. (9) will become

w j {Gp.q. +(1-_5o.q.)Gq.p.}Gpq p.q. = _,j K,jGpq

qp'q'l k ,,j ] i,j

where (p',q') and (p,q) have the following 15 instead of 25 combinations: (1,I), (1,2), (i,3),

(1,4), (1,5), (2.2), (2,3), (2,4), (2,5), (3,3), (3,4), (3,5), (4,4), (4,5), and (5,5).

(b) Mass distribution

Let's write [M] = [Mr,,t.l] = [M,j ] as the target matrix, and

r zr Z[_(l]=y_..pm.g°,g.[H].,. [ ],,,,,[ ],..[H].,.=__.p...[F].,. (I1)
m rg rn rg

as the mass matrix of the continuum model, where m ( m = I,..., K ) corresponds to the m -th Gauss

integration position in the x-direction, n (n = i,..-, K ) corresponds to the n-th Gauss integration

position in the y-direction, p,,,, is the mass density of the equivalent model at position ( m, n ), g,,

and g_ are integration weights, and [F],,,,, = [H],,r,,, [Z],,r,, [Z],,,, [HI,,,,, is a N x N matrix varying

with position ( m, n ).

By constructing an error function

= Ew,, M,j] ¢12 
r,]

where w '_ are weight coefficients, and by requiring
q

OEM _ 2 _. w _/ [IVl j ( p,,,,, ) - M ,s_ =O ,
_jO mn i.j

and noting

_'(IiJ - F,_q ( F._q. is the i, j -th term of matrix F,,,,, ),
_P.,.
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wecanobtainthemassdistribution p,,,. by solving the following linear equation set with K 2

unknowns:

Z ( Z w ;i' F,::,, F,;I, )p_.,,. = Z wqUM,j F/,J, , m, n = I, "" , K , m ', n '= l, . . . , K . (13_
m'.n i,] i.j

In the present study the following weight coefficients are used:

x ski,/max KS_ml+!},

w,j =IOK o ,.s ( q
(14")

,$l Skin/ma Skiw j = IOM,i i.jx(M,s )+ 1

The basic idea behind this choice is that we want to form the equivalent matrices more in the way

of the skin's, which is more like a plate than the other components of the wing, i.e. spars and ribs.

Several choices about the variation of p and [D] have been tried, but it is found that the

present assumptions give the best results in terms of feasibility and accuracy. For instance, to be

consistent with the assumption that each term of [D] is a constant throughout the wing area, p can

also be assumed a constant. This certainly decreases the accuracy of the method due to the loss of

flexibility in varying p to simulate the target mass matrix [M l, but the resultant reduction in

computational effort is small since in the first place, forming Eq. (13) and training the p -related

neural networks do not need much CPU time. In other cases, [D] was assumed to be variable in the

span-wise direction or throughout the wing area, but it is found that although the equivalent

material is more flexible to simulate the target stiffness matrix [K], the resultant [K] usually has a

larger abstract error and the solution of the free vibration problem usually gives worse natural

frequencies. Moreover, the CPU time needed for generating Eq. (I0), which requires the major

computational effort in our method, increases in a factor of about K (number of Gauss integration

points, usually with a value of 6) in the case of [D] being variable in the span-wise direction. In the
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case of [D] being variable throughout the wing area, the increase can be as large as K: times. As

we shall see in the following examples, these kinds of increase in CPU time are formidable.

Examples and Discussion

The Neural-Network-aided equivalent plate analysis, or briefly Equivalent Skin Analysis (ESA)

method is compared with the ordinary equivalent plate analysis (EPA) _ in three cases where 4 to 6

design variables are involved respectively. In some of the results, FEA results employing

MSC/NASTRAN are also provided as a benchmark.

Some common parameters of the built-up wing structures will be specified herein if not

specified otherwise in the following cases. The sections were generated by the Karman-Trefftz

transformation _3. The section thickness-chord ratio varies from 0.15 at the root to 0.06 at the tip.

Skin Thickness to =. 118in ; Spar Cap Height hI =. 197in, Spar Cap Width 11 = .373in, Spar Web

Thickness t_ = .058in (for definition of h z etc. one can see Ref. l ); the ribs have the same cap

dimensions and web thickness as the spars. Mass Density p = 2.526 x l0 -a lb. sec2/in 4, Young's

Modulus E = 1.025 x 107 lb/in 2, Poisson's Ratio v = 0.3. The wing is clamped at the root.

(a) Four-variable case: design space I

In this case 4 spars and l0 ribs are evenly distributed inside the wing plan form under the skins.

For a trapezoidal wing, there are four major independent shape variables: sweep angle A, aspect

ratioa , taper ratio z, and plan area A (see Fig. 1). A 3a full factorial experimental design with 3

and A respectively, was used. Particulars of the levels of every variable are aslevels in A, a,

follows:

A = {0 _,15" ,30° }, gz = {1.0,1.75,2.5},

r = {0.3,0.45,0.6}, A = {2000,3500,5000}in z. J
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For each point in this design space, the EPA is carried out, then Eqs. (10) and (13) are used to

generate the 15 constitutive matrix terms and mass densities at 36 (6 x 6) Gauss sampling points.

and the ESA is performed. For each of these parameters, a feed-forward neural network with a

structure of 4 x 15 x 10 x l, i.e. 4 inputs, 15 neurons in the first hidden layer, 10 neurons in the

second hidden layer, and 1 output, is trained using the MATLAB NN Toolbox function trainlm that

trains feed-forward network with the Levenberg-Marquardt algorithm m. Therefore, there are totallF

15+36=51 networks to be trained. There are 81 ( 34 ) sets of training data, which are non-

dimensionalized before the training process. Once the networks are trained, the input-output

relationships can be readily retrieved by using the MATLAB function simuff.

The major computational effort was spent in generating the 81 sets of training data, with about

45 hours of CPU time being spent on a PII/350 personal computer, while less than 1 hour of CPU

time being used in training the neural networks. A set of results are given in Fig. 2 where 25 points,

which mean 25 new designs, were randomly chosen within the design space box. Upon each new

design both the EPA and the ESA are performed. The plan forms of the new design are shown in

Fig. 2(a). The first 10 natural frequencies by the EPA and the ESA are compared in Fig. 2(b) and

their relative differences (based on the EPA results) are shown in Fig. 2(c). It can be seen that

except for a very few cases (3 out of 250), the relative difference is within - 10%- 10%.

Fig. 3(a) shows 16 new designs through a randomly chosen path inside the design space box

which is defined as

v j = v_(l - a j) + v/aJ,j = 1,...,4"

v I =A,v 2 = Ot',v 3 =r,V "_ =A (.15)

a j =s"' ,nj =rj/(1- rj).
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., ,I =0 _, 'where vd and v_' are the lower and upper bounds of variable v j for instance, % v I = 30'

etc., se [0.1] is the range of a shape variable, and rj(j = 1,...4) are randomly determined values

between 0 and l. Results of natural frequencies of the first 6 modes for wing structures defined by

points along a path with n _=0.945, n 2 =8.200, n 3=3.203 and n 4 =1.778 are shown in Fig. 3(b),

where it can be seen that results by the EPA and the ESA agree with each other quite well.

While Figs. 2 and 3 are about free vibration frequencies, Fig. (4) shows some static results. For

an arbitrary new design whose plan form as shown in Fig. 7(a), a down-ward (- z direction) point

force of 1 Ib is applied at the mid-point of the wing tip (actually the force is divided into

components acting on the two spar tips close to the mid-point). Fig. 4(a) shows displacements

along the leading-edge by the EPA and the ESA, where u, v, w are displacement components in the

chord-wise, span-wise, and vertical directions respectively. Figs. 4(b) and 4(c) show the Von Mises

stress distributions at the wing root and the central span-wise line respectively. It can also be seen

that the EPA and the ESA give very comparable results for the static case.

(b) Six-variable case: design space II

[n this case spars and ribs are evenly distributed inside the wing plan form but their numbers are

design variables. A 36 full factorial experimental design with 3 levels in A, a, _, A and

and nr, b respectively, was used. Particulars of the levels of everynumbers of spars and ribs, n,_,,,,

variable are as follows:

A = {0",15°,30" },

r = {0.3,0.45,0.6},

Flpar = {2,4,6},

a = {1.0,1.75,2.5}, ]

A = {2000,3500,5000}in 2

n_,h = {7,1033}.

Similar to case I, for each point in the design space II, the EPA is carried out and Eqs. (10) and

(13) are used to generate the 15 constitutive matrix terms and the 36 mass densities which are then
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usedto performtheESA.A totalof 51feed-forwardneuralnetworkswith astructureof

6x 15x 10x I aretrainedusingtheMATLABNN Toolboxfunction trainlm. There are 729 ( 3" ) sets

of data that could be used for training, but it was found that at some design points the differences

between the natural frequencies by the EPA and the ESA become too large. Therefore, a screening

process was introduced, in which any point where the maximum relative difference between the

first I0 natural frequencies by the EPA and the ESA surpasses 20% will be discarded. This led to

the removal of 28 points through the process, therefore 701 sets of data were used for training.

Generating the 729 sets of pre-training data used about 152 hours of CPU time on the Crunch

(SGI Origin 2000 with eight R10000 processors) of the College of Engineering, Virginia Tech, and

training the neural networks spent about 2 hours on a PII/350 PC. A set of results are given in Fig.

5 where 25 points were randomly chosen within the design space box. The plan forms of the new

designs are shown in Fig. 5(a), where dashed lines indicate the spar or rib positions. The first 10

natural frequencies by the EPA and the ESA are compared in Fig. 5(b) and their relative differences

(based on the EPA results) are shown in Fig. 5(c). It can be seen that the relative difference is

within -5%-15%.

Fig. 6(a) shows 16 new designs through a randomly chosen path inside the design space box

which is defined as

v j = v_(1-a j) + via ) , j = 1,...,6

= = V 6v' A,v 2 a',v 3 =r,v 4 =A,v s =n,.p,_r, =nr,h (16)

aJ = s _' n j rj/(l rj).

where rj (j = l,... ,6) are randomly determined values between 0 and 1, and see Eq. (15) for the

definition of other symbols. Results of natural frequencies of the first 6 modes for wing structures

defined by points along a path with n _=0.2243, n 2 =0.8591, n 3=0.2064, n 4 =3.0700, n 5 =2.2196
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and n 6=0.9440 are shown in Fig. 6(b), where it can be seen that results by the EPA and the ESA

agree with each other quite well.

Now some static results. For an arbitrary new design whose plan form is shown in Fig. 7(a), a

down-ward (- z direction) point force of 1 lb is applied at the mid-point of the wing tip. Fig. 7(b)

shows displacement components along the leading-edge by the EPA and the ESA, compared FEA

using MSC/NASTRAN. Figs. 7(c) and 7(d) show the Von Mises stress distributions at the wing

root and the central span-wise line respectively together with the FEA results. Comparison of the

natural frequencies of this wing as given by the EPA, the ESA and the FEA is shown in Table 1. It

can be seen that the EPA and the ESA results are close, and they all agree quite well with the FEA

results.

(c) Design space llI

In this case a wing plan with A = 30 ° , s = 192 in, b = 72 in, and a = 36 in (see Fig. 1 for

definitions of s ,b, and a ) is used. A 24 x 32 full factorial experimental design with 2 levels in t0,

(skin thickness at wing tip), at, (skin thickness increment ratio at root over the tip), h_ (spar cap

height) and h 2 (rib cap height), and 3 levels in n_par and nr,b , is carried out. The skins are assumed

to vary linearly from the root to the tip. Particulars of design space III are as follows:

to, ={1,3}x0.118 in, a, ={0,2}, ]

h 1={1,3}x0.197 in, h 1={1,3}x0.197 in,
n,par = {2,4,6}, nr,b = {6,10,14}

There are 144 sets of data for training. Generating these data sets used much less CPU time than

in the case of design space II (about 30 hours). A set of results are given in Fig. 8 where 16 points

were randomly chosen within the design space box. The plan forms of the new designs are shown

in Fig. 8(a), where dashed lines indicate the spar or rib positions, and the skin thickness at the wing
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root andtip. andcapheightsof sparsandribsarerepresentedasshownin Fig. 10(a). The first 10

natural frequencies by the EPA and the ESA are compared in Fig. 8(b) and their relative difference,_

(based on the EPA results) are shown in Fig. 8(c). It can be seen that the relative difference is

within 4%-15%.

Fig. 9(a) shows 16 new designs through a randomly chosen path inside the design space box

which is defined as

v' = vg(I -a') + v/a',j= 1,...,6

2 V._ a V s n,o_,,V 6 (17)VI =tot,V =a n, =hl,v =h 2, = =n_, b

a' =s_',nj =r/(I-r).

where rj (j = 1,...,6) are randomly determined values between 0 and 1, and see Eq. (15) for the

definition of other symbols. Results of natural frequencies of the first 6 modes for wing structures

defined by points along the path with n _=0.0031, n 2 =0.9999, n 3=0.2089, n 4 =64.7024, n 5=0.9067

and n e,=0.5325 are shown in Fig. 9(b), where it can be seen that results by the EPA and the ESA

agree with each other quite well.

For an arbitrary new design whose plan form is shown in Fig. 10(a), a down-ward (- z

direction) point force of 1 lb is applied at the mid-point of the wing tip. Fig. 10(b) shows

displacement components along the leading-edge by the EPA and the ESA, compared with FEA

using MSC/NASTRAN. Figs. 10(c) and 10(d) show the Von Mises stress distributions at the wing

root and the central span-wise line respectively together with the FEA results. Comparison of the

natural frequencies of this wing as given by the EPA, the ESA and the FEA is shown in Table 2.

Again, it can be seen that the EPA and the ESA results are close, and they all agree quite well with

the FEA results. It is noted that a coarser design space III does not worsen the accuracy of the ESA.
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TheCPUtime savingsusingtheESAareobvious.Forinstance,when6 termsof theLegendre

polynomials( K = 6 ) are used, about 85% less CPU time is spent in evaluating the stiffness and

mass matrices compared with the EPA, where matrix evaluation takes about 68% of the total CPU

time when solving the free vibration problem. When K = 8, about 83% less CPU time is spent in

evaluating the matrices compared with the EPA, where matrix evaluation takes about 65% of the

total CPU time. Generally speaking, the results given by the ESA in design space II and l]I are as

good as those in design space I although the number of variables increases from 4 to 6.

Conclusion

An efficient method for the analysis of built-up wing structures using Equivalent Skin Analysis

(ESA) has been developed. The CPU time spent on evaluating the matrices, which takes about

63-68% the total CPU time in the EPA applying to solve a free vibration problem, is about 5-6

times less when the ESA is used. Three groups of examples with 4 or 6 design variables show that

fairly good results can be obtained. This method is very promising to be used at the early stages of

wing design.
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Table 1 Natural frequencies (rad/sec) of the wing in Fig. 7(a)

Mode No.

Mode Shape
EPA

1 2 3

I st bending 2 nd bending I st torsion

279.3 982.8 1057.5

ESA 274.5 984.1

FEM 279.9 965.6

4 5

In plane 2 °d torsion
1447.4 1945.5

1045.1

973.5 1454.4

1440.3 1936.3

1830.8

Table 2 Natural frequencies (rad/sec) of the wing in Fig. 10(a)

Mode No. 1

Mode Shape 1_tbending
EPA 71.9

ESA 70.8

FEM , 66.0

2

2 '_dbending
233.9

239.4

222.6

In plane
358.1

358.4

377.0

4 [ 5
1st torsion 3 rd bending

452.2 479.9

469.4 504.8 i
413.1 468.0 i

I
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X

Fig. 1 Plan configuration of a trapezoidal wing: A = -_s(a + b),cr = sZ/A, r = a/b.

Fig. 2 (a) 25 randomly chosen wing plan forms in design space I
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Fig. 3 (a) 16 wing plan forms systematically varying through design space I
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Fig. 3 (b) Comparison of the first 6 frequencies by EPA and ESA
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Fig. 6 (a) 16 wing plan forms systematically varying through design space II
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Fig. 6 (b) Comparison of the first 6 frequencies by EPA and ESA
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Fig. 7 (a) All arbitrarily chosen wing plan form in design space I & II
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Fig. 8 (a) 16 randomly chosen wing designs in design space lII
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